Robot-Ethics Background for OFAI Position Paper ("Engineer at the level of the OS!")

Selmer Bringsjord ${ }^{(1)}$ • Naveen Sundar G. ${ }^{(2)}$
Rensselaer AI \& Reasoning (RAIR) Lab ${ }^{(1,2)}$
Department of Cognitive Science ${ }^{(1)}$
Department of Computer Science ${ }^{(1,2)}$
Lally School of Management \& Technology ${ }^{(1)}$
Rensselaer Polytechnic Institute (RPI)
Troy, New York I2I80 USA
OFAI
Vienna, AT
9/27/2013

Made possible by the generosity of:

霵 IBM

RPI's pursuit of ITS/IILE
NSF
*)
E) AFOSR

ONR $\times 2$

What is Al for you?

Infinitary (Aol 2)

Elevated AI only!:
"The ultimate goal of Al is to build a person, or more humbly, an animal." \qquad

heterogeneous/visual
heterogeneous/visual
temporal+epistemic+deontic

Analogico-Deductive Moral Reasoning (ADMR)

- Moral problem presented as story (in psychometric sense) and a stem, or query.
- A stem has correct answer A and a set P_{i} of correct proofs or arguments establishing A, relative to:
- An associated implicit moral theory, and
- A corresponding moral code

But moral dilemmas often have multiple theory codes, and competing answers!

Analogico-Deductive Moral Reasoning (ADMR)

But can this be done in a cognitively-psychologically realistic way?

CLARION Subsystems

The Heinz Dilemma (Kohlberg)

"In Europe, a woman was near death from a special kind of cancer. There was one drug that the doctors thought might save her. It was a form of radium that a druggist in the same town had recently discovered. The drug was expensive to make, but the druggist was charging ten times what the drug cost him to make. He paid $\$ 200$ for the radium and charged $\$ 2,000$ for a small dose of the drug.

The sick woman's husband, Heinz, went to everyone he knew to borrow the money, but he could only get together about $\$ 1,000$, which is half of what it cost. He told the druggist that his wife was dying and asked him to sell it cheaper or let him pay later. But the druggist said:"No, I discovered the drug and I'm going to make money from it." So Heinz got desperate and broke into the man's store to steal the drug for his wife. Should the husband have done that?"

A simple example in DCEC*

a

$$
\begin{aligned}
\forall t: \text { Moment, } a: \text { Agent }(& \operatorname{holds}(\operatorname{sick}(a), t) \wedge\left(\forall t^{\prime}: \text { Moment } t^{\prime}<T \Rightarrow \neg \operatorname{happens}\left(\text { treated }(a), t+t^{\prime}\right)\right) \\
& \Rightarrow(\operatorname{happens}(\operatorname{dies}(a), t+T) \vee \operatorname{holds}(\operatorname{dead}(a), t+T))
\end{aligned}
$$

$\mathrm{P}_{2} \operatorname{holds}\left(\operatorname{sick}(\right.$ wife $\left.(\mathrm{I} *)), t_{0}\right) \wedge\left(\forall t^{\prime}:\right.$ Moment $t^{\prime}<T \Rightarrow \neg \operatorname{happens}\left(\right.$ treated $($ wife $\left.(\mathrm{I} *)), t_{0}+t^{\prime}\right)$

Q happens $\left(\operatorname{dies}(\right.$ wife $\left.(\mathrm{I} *)), t_{0}+T\right) \vee \operatorname{holds}\left(\operatorname{dead}(\operatorname{wife}(\mathrm{I} *)), t_{0}+T\right)$

Note:This adheres strictly to the syntax of DCEC*

PI in CLARION's NACS (simplified version)

(forall (t, a) (if (and (holds (sick a) t) (forall t^{\prime} (if (< $\mathrm{t}^{\prime} \mathrm{T}$) (not (happens (treated a) (+t t')))))) (or (happens (dies a) (+ t T)) (holds (dead a) (+ t T)))))
(if (and (holds (sick a) t) (forall t' (if $\left(<t^{\prime} T\right.$) (not (happens (treated a) (+ t t')))))) (or (happens (dies a) (+ t T)) (holds (dead a) (+ t T)))))

We may need the DCEC*: Far beyond the reach of all cognitive architectures (at the moment)

```
Syntax
    Object | Agent | Self }\sqsubset\mathrm{ Agent | ActionType | Action }\sqsubseteq Event |
    Moment | Boolean | Fluent | Numeric
t::=x:S|c:S|f(t, ,.., th)
    p: Boolean | \neg\phi | \phi\wedge\psi | \phi\vee\psi | \phi->\psi | \phi\leftrightarrow\psi| \forallx:S. \phi| \existsx:S. \phi f::= initiates: Event }\times\mathrm{ Fluent }\times\mathrm{ Moment }->\mathrm{ Boolean
    P(a,t,\phi)|\mathbf{K}(a,t,\phi)|\mathbf{C}(t,\phi)|\mathbf{S}(a,b,t,\phi)|\mathbf{S}(a,t,\phi)
\phi::=\mathbf{B}(a,t,\phi)|\mathbf{D}(a,t,holds(f,\mp@subsup{t}{}{\prime}))|\mathbf{I}(a,t,\mathrm{ happens(action (a*, 人),t'))}
    O(a,t,\phi,happens(action (a*, \alpha),t'))
    action: Agent }\times\mathrm{ ActionType }->\mathrm{ Action
    initially: Fluent }->\mathrm{ Boolean
    holds: Fluent }\times\mathrm{ Moment }->\mathrm{ Boolean
    happens: Event }\times\mathrm{ Moment }->\mathrm{ Boolean
    clipped : Moment }\times\mathrm{ Fluent }\times\mathrm{ Moment }->\mathrm{ Boolean
    terminates: Event }\times\mathrm{ Fluent }\times\mathrm{ Moment }->\mathrm{ Boolean
    prior: Moment }\times\mathrm{ Moment }->\mathrm{ Boolean
interval:Moment }\times\mathrm{ Boolean
* : Agent }->\mathrm{ Self
payoff : Agent }\times\mathrm{ ActionType }\times\mathrm{ Moment }->\mathrm{ Numeric
```


Rules of Inference


```
\[
\frac{\mathbf{C}(t, \phi) t \leq t_{1} \ldots t \leq t_{n}}{\mathbf{K}\left(a_{1}, t_{1}, \ldots \mathbf{K}\left(a_{n}, t_{n}, \phi\right) \ldots\right)}\left[R_{3}\right] \frac{\mathbf{K}(a, t, \phi)}{\phi}\left[R_{4}\right]
\]
\[
\frac{t_{1} \leq t_{3}, t_{2} \leq t_{3}}{\mathbf{C}\left(t, \mathbf{K}\left(a, t_{1}, \phi_{1} \rightarrow \phi_{2}\right) \rightarrow\left(\mathbf{K}\left(a, t_{2}, \phi_{1}\right) \rightarrow \mathbf{K}\left(a, t_{3}, \phi_{2}\right)\right)\right)}
\]
\[
\frac{t_{1} \leq t_{3}, t_{2} \leq t_{3}}{\mathbf{C}\left(t, \mathbf{B}\left(a, t_{1}, \phi_{1} \rightarrow \phi_{2}\right) \rightarrow\left(\mathbf{B}\left(a, t_{2}, \phi_{1}\right) \rightarrow \mathbf{B}\left(a, t_{3}, \phi_{2}\right)\right)\right)}\left[R_{6}\right]
\]
\[
\frac{t_{1} \leq t_{3}, t_{2} \leq t_{3}}{\mathbf{C}\left(t, \mathbf{C}\left(t_{1}, \phi_{1} \rightarrow \phi_{2}\right) \rightarrow\left(\mathbf{C}\left(t_{2}, \phi_{1}\right) \rightarrow \mathbf{C}\left(t_{3}, \phi_{2}\right)\right)\right)}\left[R_{7}\right]
\]
```



```
\(\frac{\phi \leftrightarrow \psi}{\mathbf{O}(a, t, \phi, \gamma) \leftrightarrow \mathbf{O}(a, t, \psi, \gamma)}\left[R_{15}\right]\)
```


More Complex DCEC* Specimen from Heinz Dilemma

$$
\begin{aligned}
\text { Given } \mathbf{B}(\mathrm{I}, \text { now, } \forall t: \text { Moment, } a: \text { Agent } & \left(\operatorname{holds}(\operatorname{sick}(a), t) \wedge\left(\forall t^{\prime}: \text { Moment } t^{\prime}<T \Rightarrow \neg \operatorname{happens}\left(\operatorname{treated}(a), t+t^{\prime}\right)\right)\right. \\
& \Rightarrow(\operatorname{happens}(\operatorname{dies}(a), t+T) \vee \operatorname{holds}(\operatorname{dead}(a), t+T)))
\end{aligned}
$$

Given $\mathbf{K}\left(\mathrm{I}\right.$, now, holds $\left(\operatorname{sick}(\right.$ wife $\left.(\mathrm{I} *)), t_{0}\right) \wedge\left(\forall t^{\prime}:\right.$ Moment $t^{\prime}<T \Rightarrow \neg$ happens(treated $($ wife $\left.\left.(\mathrm{I} *)), t+t^{\prime}\right)\right)$
Inferred $\mathbf{B}\left(\mathrm{I}\right.$, now, happens $\left(\operatorname{dies}(\right.$ wife $\left.(\mathrm{I} *)), t_{0}+T\right) \vee \operatorname{holds}\left(\operatorname{dead}(\right.$ wife $\left.\left.(\mathrm{I} *)), t_{0}+T\right)\right)$

Given $\mathbf{K}(\mathrm{I}$, now, EventCalculus \Rightarrow
$\left(\operatorname{happens}\left(\operatorname{dies}(\right.\right.$ wife $\left.(\mathrm{I} *)), t_{0}+T\right) \vee \operatorname{holds}\left(\operatorname{dead}(\operatorname{wife}(\mathrm{I} *)), t_{0}+T\right) \Rightarrow$
$\left.\left.\neg \operatorname{holds}\left(\operatorname{alive}(\operatorname{wife}(\mathrm{I} *)), t_{0}+T\right)\right)\right)$
Inferred
$\mathbf{B}\left(\mathrm{I}\right.$, now, $\neg \operatorname{holds}\left(\operatorname{alive}(\right.$ wife $\left.\left.(\mathrm{I} *)), t_{0}+T\right)\right)$
Given $\mathbf{D}\left(\mathrm{I}\right.$, now, holds $\left(\right.$ alive $($ wife $\left.\left.(\mathrm{I} *)), t_{0}+T\right)\right)$

$$
\text { Given } \begin{aligned}
& (\mathbf{B}(\mathrm{I}, \text { now, } \neg \text { holds }(f, t)) \wedge \mathbf{D}(\mathrm{I}, \text { now, holds }(f, t)) \wedge \\
& \mathbf{K}(\mathrm{I}, \text { now }, \operatorname{happens}(\operatorname{action}(\mathrm{I} *, \alpha), \text { now }) \Rightarrow \operatorname{holds}(f, t))) \\
& \quad \Rightarrow \mathbf{I}(\mathrm{I}, \text { now }, \operatorname{happens}(\operatorname{action}(\mathrm{I} *, \alpha), \text { now }))
\end{aligned}
$$

Given $\mathbf{K}\left(\mathrm{I}\right.$, now, happens $(\operatorname{action}(\mathrm{I} *$, treat $)$, now $) \Rightarrow \operatorname{holds}\left(\operatorname{alive}(\right.$ wife $\left.\left.\left.(\mathrm{I} *)), t_{0}+T\right)\right)\right)$
Inferred $\mathbf{I}(\mathrm{I}$, now, happens(action($\mathrm{I} *$, treat $)$, now $)$)

The Overall Approach

Automation of Reasoning

DPLs for $\mathcal{D C E} C^{*}$ under construction ...

K. Arkoudas. Denotational Proof Languages. PhD thesis, MIT, 2000.
K. Arkoudas and S. Bringsjord. Propositional Attitudes and Causation. International Journal of

Software and Informatics, 3(1):47-65, 2009.

Logicist NLP

Two Major Approaches

Deep Modeling

Controlled English

On Deep Computational Formalization of Natural Language
Naveen Sundar Govindarajulu, John Licato and Selmer Bringsjord
Workshop on Formalizing Mechanisms for Artificial General Intelligence, 20I3,AGI 20 I3

Controlled English

$\mathcal{D C E} \mathcal{C}_{C L}^{*}$ corresponds to a subset of English! RLCNL: RAIR Lab Controlled Natural Language
 $\mathbf{K}(u g v$, now, holds(carrying(ugv, soldier), now))

The ugv now knows that the fluent, 'the ugv is carrying the soldier,' holds now.
$\mathbf{B}\left(\right.$ ugv, now, $\mathbf{B}\left(\right.$ commander, $t_{1}, \neg \mathbf{P}($ ugv, anytime, happens(firefight, anytime)))
The ugv now believes that the commander at moment t l believes that it is not the case that the ugv at any time perceives that a firefight happens at any time.
$\mathbf{K}\left(\mathrm{I}\right.$, now, $\mathbf{O}\left(\mathrm{I}^{*}\right.$, now, mission $($ main $)$, happens $\left(\operatorname{action}\left(\mathrm{I}^{*}\right.\right.$, silence $)$, alltime $\left.\left.)\right)\right)$
I now know that it is obligatory for myself under the condition that the main mission being carried out, that I myself should see to it that silence is maintained at all times.

