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Vivid

DCEC ⇤
Deontic Cognitive Event Calculus 

(with Castañeda’s *)

1. natural language semantics (non-Montagovian)

2. higher-cognition tests (for Psychometric AI)
   (false-belief test, deliberative mind-reading 
     mirror test for self-consciousness ...)

4. biz & econ simulation 
3. ethically correct robots

Gödel’s “God Theorem”

AI-ified Axiomatic Physics!
(Synthese)

ITS (Culture, Language, Math)

Goodstein’s Theorem!
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Elevated AI only!:

“The ultimate goal of AI is to 
build a person, or more humbly, 
an animal.”  —C&M

What is AI for you?
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Darwininan “Canine” AI
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“Full-Watson” AI
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Person-Aspiring AI



Analogico-Deductive Moral 
Reasoning (ADMR)

• Moral problem presented as story (in psychometric 
sense) and a stem, or query.

• A stem has correct answer A and a set Pi of 
correct proofs or arguments establishing A, relative 
to:

• An associated implicit moral theory, and

• A corresponding moral code

But moral dilemmas often have multiple theory 
codes, and competing answers!



Analogico-Deductive Moral 
Reasoning (ADMR)

Input: 
(story,

query/stem)

Output:
{(A1, proofs/arguments of A1),

(A2, proofs/arguments of A2), ...}

ADMR
System

Moral 
Theories and 

Codes

Analogy 
Source Cases



Moral Problem P1

Moral Problem P2

Moral Problem P3

Moral Problem Pk

...

Moral Dilemma D1

Moral Dilemma D2

Moral Dilemma D3

Moral Dilemma Dk

...
...

...

Machine SolutionSolution to P1

Solution to P2

Solution to Pk-1

Solution to D1

Solution to D2

Solution to Dk-1

eg, Heinz Dilemma



But can this be done in a 
cognitively-psychologically realistic way?



CLARION Subsystems

ACS 
Top Level

ACS 
Bottom Level

MS 
Top Level

MS 
Bottom Level

NACS 
Top Level

NACS 
Bottom Level

MCS 
Top Level

MCS 
Bottom Level

Sensory
info

Action



The Heinz Dilemma (Kohlberg)

“In Europe, a woman was near death from a special kind of cancer.  There was 
one drug that the doctors thought might save her.  It was a form of radium that a 
druggist in the same town had recently discovered.  The drug was expensive to 
make, but the druggist was charging ten times what the drug cost him to make.  
He paid $200 for the radium and charged $2,000 for a small dose of the drug.  
 
The sick woman’s husband, Heinz, went to everyone he knew to borrow the 
money, but he could only get together about $1,000, which is half of what it cost. 
He told the druggist that his wife was dying and asked him to sell it cheaper or let 
him pay later.  But the druggist said: “No, I discovered the drug and I’m going to 
make money from it.”  So Heinz got desperate and broke into the man’s store to 
steal the drug for his wife.  Should the husband have done that?”



A simple example in DCEC*

8t : Moment,a : Agent

 
holds(sick(a), t)^

⇣
8t

0 : Moment t

0 < T ) ¬happens(treated(a), t + t

0)
⌘

) (happens(dies(a), t +T )_holds(dead(a), t +T )

!
P1

P2

happens(dies(wi f e(I⇤)), t0 +T )_holds(dead(wi f e(I⇤)), t0 +T )Q

Note: This adheres strictly to the syntax of DCEC*

holds(sick(wi f e(I⇤)), t0)^
⇣
8t

0 : Moment t

0 < T ) ¬happens(treated(wi f e(I⇤)), t0 + t

0)



P1 in CLARION’s NACS (simplified version)

a tt’ T

(forall (t,a) (if (and (holds (sick a) t) (forall t' (if (< t' T) (not (happens (treated a) (+ t t’)))))) 
(or (happens (dies a) (+ t T)) (holds (dead a) (+ t T)))))

(or (happens (dies a) (+ t T)) 
(holds (dead a) (+ t T))))

(and (holds (sick a) t) (forall t' (if (< t' T) 
(not (happens (treated a) (+ t t’))))))

(if (and (holds (sick a) t) (forall t' (if (< t' T) (not (happens (treated a) 
(+ t t’)))))) (or (happens (dies a) (+ t T)) (holds (dead a) (+ t T)))))

(holds (sick 
a) t)

(forall t' (if (< t' T) (not 
(happens (treated a) (+ t t’))))

(sick a)
(if (< t' T) (not (happens 

(treated a) (+ t t’)))

(< t' T) (not (happens 
(treated a) (+ t t’)))

(happens (treated 
a) (+ t t’))

(treated a) (+ t t’)

(happens (dies 
a) (+ t T))

(holds (dead 
a) (+ t T))

(dies a)

(+ t T)

(dead a)

∀



We may need the DCEC*: Far beyond the reach 
of all cognitive architectures (at the moment)

Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action � Event |
Moment | Boolean | Fluent | Numeric

t ::=x : S | c : S | f (t1, . . . , tn)

f ::=

p : Boolean | ¬f | f⌦y | f↵y | f ⌅ y | f ⇧ y | �x : S. f |  x : S. f
P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)
B(a, t,f) | D(a, t,holds( f , t ⌃)) | I(a, t,happens(action(a⇥,a), t ⌃))
O(a, t,f,happens(action(a⇥,a), t ⌃))

f ::=

action : Agent�ActionType ⌅ Action

initially : Fluent ⌅ Boolean

holds : Fluent�Moment ⌅ Boolean

happens : Event�Moment ⌅ Boolean

clipped : Moment�Fluent�Moment ⌅ Boolean

initiates : Event�Fluent�Moment ⌅ Boolean

terminates : Event�Fluent�Moment ⌅ Boolean

prior : Moment�Moment ⌅ Boolean

interval : Moment�Boolean

⇥ : Agent ⌅ Self

payoff : Agent�ActionType�Moment ⌅ Numeric

Rules of Inference

C(t,P(a, t,f)⌅ K(a, t,f))
[R1] C(t,K(a, t,f)⌅ B(a, t,f))

[R2]

C(t,f) t ⇤ t1 . . . t ⇤ t

n

K(a1, t1, . . .K(a
n

, t
n

,f) . . .)
[R3]

K(a, t,f)
f [R4]

t1 ⇤ t3, t2 ⇤ t3

C(t,K(a, t1,f1 ⌅ f2)⌅ (K(a, t2,f1)⌅ K(a, t3,f2)))
[R5]

t1 ⇤ t3, t2 ⇤ t3

C(t,B(a, t1,f1 ⌅ f2)⌅ (B(a, t2,f1)⌅ B(a, t3,f2)))
[R6]

t1 ⇤ t3, t2 ⇤ t3

C(t,C(t1,f1 ⌅ f2)⌅ (C(t2,f1)⌅ C(t3,f2)))
[R7]

C(t,�x. f ⌅ f[x ⌥⌅ t])
[R8] C(t,f1 ⇧ f2 ⌅ ¬f2 ⌅ ¬f1)

[R9]

C(t, [f1 ⌦ . . .⌦f
n

⌅ f]⌅ [f1 ⌅ . . .⌅ f
n

⌅ y])
[R10]

B(a, t,f) B(a, t,f ⌅ y)
B(a, t,y)

[R11a

]
B(a, t,f) B(a, t,y)

B(a, t,y⌦f)
[R11b

]

S(s,h, t,f)
B(h, t,B(s, t,f))

[R12]
I(a, t,happens(action(a⇥,a), t ⌃))
P(a, t,happens(action(a⇥,a), t))

[R13]

B(a, t,f) B(a, t,O(a⇥, t,f,happens(action(a⇥,a), t ⌃)))
O(a, t,f,happens(action(a⇥,a), t ⌃))

K(a, t,I(a⇥, t,happens(action(a⇥,a), t ⌃)))
[R14]

f ⇧ y
O(a, t,f,g)⇧ O(a, t,y,g)

[R15]

1



More Complex DCEC* Specimen 
from Heinz Dilemma

K
⇣
I,now,holds(sick(wi f e(I⇤)), t0)^

⇣
8t

0 : Moment t

0 < T ) ¬happens(treated(wi f e(I⇤)), t + t

0)
⌘

B

 
I,now,8t : Moment,a : Agent

 
holds(sick(a), t)^

⇣
8t

0 : Moment t

0 < T ) ¬happens(treated(a), t + t

0)
⌘

) (happens(dies(a), t +T )_holds(dead(a), t +T )

!!

B
�
I,now,happens(dies(wi f e(I⇤)), t0 +T )_holds(dead(wi f e(I⇤)), t0 +T )

�

K
�
I,now,EventCalculus)

�
happens(dies(wi f e(I⇤)), t0 +T )_holds(dead(wi f e(I⇤)), t0 +T ))
¬holds(alive(wi f e(I⇤)), t0 +T )

��

D
�
I,now,holds(alive(wi f e(I⇤)), t0 +T )

�
B
�
I,now,¬holds(alive(wi f e(I⇤)), t0 +T )

�

Given

Given

Given

Inferred

Inferred

Given
�
B
�
I,now,¬holds( f , t))^D

�
I,now,holds( f , t))^

K
�
I,now,happens(action(I⇤,a),now)) holds( f , t))

�

) I(I,now,happens(action(I⇤,a),now))

Given

K
�
I,now,happens(action(I⇤, treat),now)) holds(alive(wi f e(I⇤)), t0 +T ))

�
Given

I
�
I,now,happens(action(I⇤, treat),now)

�
Inferred



The Overall Approach

U

ADR M

DCEC ⇤

DCEC ⇤
CL

DIARC

UIMA/Watson



Automation of Reasoning
Denotational Proof Languages

Type-a DPL Type-w DPL

Proof checking. Proof discovery (and checking).

diagrammatic and symbolic reasoning.5
trip Rear-Middle for Ph3. Summarizing the segments, the round-trip takes
twice as much time for Ph4 as for Ph3.

Earth

time

space

Ph3

Ph4

v

Figure 4: The round-trip for Ph3 takes the same time as for Ph4, seen
both from Spaceship and from the Earth. Hence Earth infers that Middle
is indeed in the middle of the ship.

As we said earlier, we observe from the Earth that Ph3, Ph4 and Middle
meet in a single event. Therefore, since we observe that Ph3 arrives to
Middle exactly when Ph4 arrives to Middle after their round-trips, we have
to infer, on the Earth, that Middle really stands exactly in the middle of
Spaceship. There remains only the possibility that Nose sent out his photon
Ph2, which we see as fast-moving along the hull of the space ship, much
later than Rear sent Ph1 which we see as slowly-moving along the hull of
the spaceship. Thus, as seen from the Earth, the clocks at the nose and at
the rear of the spaceship show di�erent times (at the same Earth-moment).
This is what we mean when we say that the clocks of the spaceship get out

13

Figure 4: Conceptual Reasoning Using Diagrams

A LOGIC ROAD FROM SPECIAL TO GENERAL RELATIVITY 7

m k

p

p

p1

p1

p2
p2

p3

p3

x̄

ȳ
yt

z̄

w̄ w̄

x̄�

ȳ�

w̄�

z̄�

z̄s ȳs

Figure 1. Illustration for the proof of Theorem 2.1

Proof. Let m and k be inertial observers and let x̄, ȳ 2 wlm(k) such
that x̄ 6= ȳ. By AxFd, � is a total order, so there are three possibilities
only: |ȳs � x̄s| < |yt �xt|, |ȳs � x̄s| > |yt �xt| or |ȳs � x̄s| = |yt �xt|. We
will prove |ȳs � x̄s| < |yt � xt| by excluding the other two possibilities.

Let us first prove that |ȳs � x̄s| > |yt � xt| cannot hold. Figure 1
illustrates this proof.6 So, let us assume that |ȳs � x̄s| > |yt � xt|, we
will derive a contradiction. By AxFd, there is a coordinate point z̄ such
that |z̄s � x̄s| = |zt �xt| 6= 0, zt = yt and z̄s � x̄s is orthogonal to z̄s � ȳs

if xt 6= yt, and |z̄s � x̄s| = |zt � xt| 6= 0 and z̄s � x̄s is orthogonal to
ȳs � x̄s if xt = yt (here we used that |ȳs � x̄s| > |yt �xt|). Any choice of
such a z̄ implies that any line of slope 1 in the plane x̄ȳz̄ is parallel to
the line x̄z̄ (because the plane x̄ȳz̄ is tangent to the light cone through
z̄). To choose one concrete z̄ from the many, let

w̄s
d
=

ȳs � x̄s

|ȳs � x̄s|
, w̄�

s
d
=

hy2 � x2, x1 � y1, 0i�
(y2 � x2)2 + (x1 � y1)2

.

Then, if xt = yt, let

z̄s
d
= |ȳs � x̄s| · w̄�

s + x̄s, zt
d
= |ȳs � x̄s| + xt,

and, if xt 6= yt, let

z̄s
d
=

|yt � xt|2

|ȳs � x̄s|
· w̄s +

|yt � xt| ·
�

|ȳs � x̄s|2 � |yt � xt|2
|ȳs � x̄s|

· w̄�
s , zt

d
= yt.

6To simplify the figure, we have drawn x̄ to the origin. This is not used in the
proof but it can be assumed without losing generality.

Figure 5: Geometric Reasoning Using Diagrams
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= |ȳs � x̄s| · w̄�

s + x̄s, zt
d
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|ȳs � x̄s|
· w̄s +

|yt � xt| ·
�
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Controlled English

RLCNL: RAIR Lab Controlled Natural Language

RLCNL, the RAIR Lab’s Logically Controlled Natural Language. RLCNL and its computational
realizations fall under under the ensemble of programs composing A, and will have the following
three computational artifacts.

RLCNLG The first component will be a natural-language generation (NLG), inspired by Bringsjord’s
(2000) prior work on the generation of language, system able to convert any sentence in
DC EC ⇤/DC EC ⇤

CL into a sentence in a subset of English; this subset will comprise the language
of RLCNL.

RLCNLP The second component will be a deterministic parser able to parse English sentences generated
by the NLG system into one or more DCEC ⇤sentences. This component will be used when
trained human operators or other agents want to communicate in RLCNL.

RLCNLSP The third component will be a statistical parser that will translate sentences in ordinary English
into the closest possible sentence in RLCNL and DCEC ⇤. This component will be used when
untrained humans have to communicate with any robot or system that uses DCEC ⇤/DCEC ⇤

CL.

A nascent implementation of RLCNL is available here.7 Some DC EC ⇤/DCEC ⇤
CL formulae

and their corresponding automatic RLCNL translations from RLCNLG are given below:

• An example sentence from the ADR M demonstration:

K(ugv,now,holds(carrying(ugv,soldier),now))

RLCNL: The ugv now knows that the fluent, ’the ugv is carrying the soldier,’ holds now.

• An example from the scenario discussed under Aim 4:

B(ugv,now,B(commander, t1,¬P(ugv,anytime,happens(firefight,anytime)))

RLCNL: The ugv now believes that the commander at moment t1 believes that it is not the case that the ugv at
any time perceives that a firefight happens at any time.

• An example from the demonstration in which a UGV encounters Chisholm’s Paradox

K(I,now,O(I⇤,now,mission(main),happens(action(I⇤,silence),alltime)))

RLCNL: I now know that it is obligatory for myself under the condition that the main mission being carried out,
that I myself should see to it that silence is maintained at all times.

2.3 Architectural Implementations (AIM 3)
To instantiate moral competence in a computational architecture (Aim 3 (2.3)), we need to define
representations for the concepts and processes as determined in Aim 1 (2.1), feed these repre-
sentations into the four interleaved logic-based frameworks developed in Aim 2 (2.2), and inte-
grate these frameworks into an architecture for autonomous systems. Of all the available com-
putational architectures, our own DIARC architecture (e.g., Scheutz, Schermerhorn, Kramer and
Anderson 2007) is both theoretically and practically the only viable choice, for at the least the
following reasons:

(1) Traditional cognitive architectures (such as SOAR, ACT-R, Icarus, Epic, and others (?))
lack support for real-time operation and real-word perception and action, all necessary for robotic
applications. Robotic architectures, on the other hand, lack high-level cognitive capabilities such

7http://naveensundarg.github.com/RLCNL/
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The ugv now knows that the fluent, ’the ugv is carrying the soldier,’ holds now.

The ugv now believes that the commander at moment t1 believes that it is not the case that the 
ugv at any time perceives that a firefight happens at any time.

DCEC ⇤
CL corresponds to a subset of English!

I now know that it is obligatory for myself under the condition that the main mission being carried 
out, that I myself should see to it that silence is maintained at all times.

 Partial Implementation:  http://naveensundarg.github.io/RLCNL/


